organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3,4,5-trimethoxybenzohydrazide

Zhen-dong Zhao,* Yu-min Wang, Yu-xiang Chen and Liang-wu Bi

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China Correspondence e-mail: minwangyu@126.com

Received 3 November 2008; accepted 18 November 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 13.3.

The molecule of the title compound, $C_{17}H_{17}BrN_2O_5$, assumes an *E* configuration, with the 5-bromo-2-hydroxyphenyl and benzohydrazide units located on opposite sites of the C—N double bond. The dihedral angle between the planes of the two benzene rings is 32.48 (15)°. The crystal structure is stabilized by intramolecular O–H···N and intermolecular N–H···O hydrogen bonds.

Related literature

For related literature, see: Yang *et al.* (1996); Nawar & Hosny (2000); Pelagatti *et al.* (1999); Ainscough *et al.* (1998). For related structures, see: Diao & Yu (2006); Jing *et al.* (2005); Wang *et al.* (2008).

Experimental

Crystal data $C_{17}H_{17}BrN_2O_5$ $M_r = 409.24$

Monoclinic, $P2_1/c$ *a* = 11.4157 (19) Å

b = 16.279 (3) A	
c = 9.3738 (16) Å	
$\beta = 100.210 \ (3)^{\circ}$	
V = 1714.4 (5) Å ³	
$\mathbf{Z} = \mathbf{A}$	

Data collection

Bruker APEX CCD area-detector	8954 measured reflections
diffractometer	3037 independent reflections
Absorption correction: multi-scan	2065 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.033$
$T_{\min} = 0.712, \ T_{\max} = 0.868$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 228 parameters $wR(F^2) = 0.097$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.43$ e Å $^{-3}$ 3037 reflections $\Delta \rho_{min} = -0.54$ e Å $^{-3}$

Mo $K\alpha$ radiation $\mu = 2.43 \text{ mm}^{-1}$

 $0.15 \times 0.10 \times 0.06 \text{ mm}$

check]

T = 273 (2) K [Unusual. Please

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots N2 \\ N1 - H1A \cdots O2^{i} \end{array}$	0.82 0.86	1.92 2.14	2.642 (3) 2.888 (3)	145 146
Commentary and as (i) a				

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of China (grant No. 30571466).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2120).

References

- Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). *Inorg Chim. Acta*, **267**, 27–38.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, C.-H. & Yu, M. (2006). Acta Cryst. E62, 05278-05279.
- Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, 03495–03496.
- Nawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1-8.
- Pelagatti, P., Bacchi, A., Carcelli, M., Costa, M., Fochi, A., Ghidini, P., Leporati, E., Masi, M., Pelizzi, C. & Pelizzi, G. (1999). J. Organomet. Chem. 583, 94–105.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y.-M., Zhao, Z.-D., Chen, Y.-X. & Bi, L.-W. (2008). Acta Cryst. E64, 01009.
- Yang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749-3753.

Acta Cryst. (2008). E64, o2408 [doi:10.1107/S1600536808038464]

(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3,4,5-trimethoxybenzohydrazide

Z. Zhao, Y. Wang, Y. Chen and L. Bi

Comment

Salicyladelhyde hydrazones have received considerable attention because of their possible applications in catalysis and pharmacology (Yang *et al.*, 1996; Nawar & Hosny, 2000; Pelagatti *et al.*, 1999; Ainscough *et al.*, 1998). As part of our ongoing investigation on acylhydrazone compounds (Wang *et al.*, 2008) and their metal complexes, we have obtained the title compound, (I), from a condensation of 3,4,5-trimethoxybenzohydrazide and 5-bromo-2-hydroxybenzaldehyde, and report its crystal structure in this paper.

The molecular structure of (I) (Fig. 1) contains 3,4,5-trimethoxybenzohydrazide and 5-bromo-2-hydroxybenzaldehyde moities that are located on opposite sides of the C=N double bond exhibiting an E configuration about C=N. The dihedral angle between the mean-planes of the two benzene rings is $32.48 (15)^{\circ}$. The crystal structure involves an intramolecular hydrogen bond O1–H1···N2, and is further stabilized by an intermolecular hydrogen bonds N1–H1A···O2, resulting in chains of molecules extended along the *c*-axis; details are given in Table 1 and Fig. 2. The bond distances and bond angles in (I) are in agreement with the corresponding dimensions reported for some structures closely related to (I) (Diao & Yu, 2006; Jing *et al.*, 2005; Wang *et al.*, 2008). (

Experimental

An ethanol solution (50 ml) of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and 5-bromo-2-hydroxybenzaldehyde (0.01 mol) was refluxed and stirred for 2h ; the mixture was cooled and the resulting solid product, (I), was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in THF.

Refinement

All H atoms were placed geometrically at the distances: C—H(methyl) = 0.96, C—H(aryl) = 0.93, N—H = 0.86 and O—H = 0.82 Å and included in the refinement in riding motion approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the carrier atom.

Figures

Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2. The packing of (I), showing the intermolecular hydrogen-bonded extended network.

(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3,4,5- trimethoxybenzohydrazide

Crystal data	
C ₁₇ H ₁₇ BrN ₂ O ₅	$F_{000} = 832$
$M_r = 409.24$	$D_{\rm x} = 1.586 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2452 reflections
<i>a</i> = 11.4157 (19) Å	$\theta = 2.5 - 22.8^{\circ}$
<i>b</i> = 16.279 (3) Å	$\mu = 2.43 \text{ mm}^{-1}$
c = 9.3738 (16) Å	T = 273 (2) K
$\beta = 100.210 \ (3)^{\circ}$	Block, colourless
V = 1714.4 (5) Å ³	$0.15\times0.10\times0.06~mm$
Z = 4	

Data collection

Bruker APEX CCD area-detector diffractometer	3037 independent reflections
Radiation source: fine-focus sealed tube	2065 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 273(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 12$
$T_{\min} = 0.712, \ T_{\max} = 0.868$	$k = -19 \rightarrow 19$
8954 measured reflections	$l = -11 \rightarrow 8$

Refinement

leginement	
Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 0.6769P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
3037 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

228 parameters

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinat	es and isotropic of	r equivalent isotropic	displacement	parameters	(Å-	£)
-----------------------------	---------------------	------------------------	--------------	------------	-----	----

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.94048 (4)	1.21831 (2)	0.94475 (6)	0.0865 (2)
01	0.9086 (2)	0.92631 (14)	1.3259 (2)	0.0609 (6)
H1	0.8677	0.8897	1.2824	0.091*
O2	0.74380 (19)	0.70776 (12)	1.2188 (2)	0.0493 (5)
03	0.6562 (2)	0.42963 (12)	0.9513 (2)	0.0605 (6)
O4	0.4797 (2)	0.47058 (14)	0.7287 (2)	0.0661 (7)
O5	0.42036 (19)	0.62400 (14)	0.6698 (2)	0.0595 (6)
N1	0.7240 (2)	0.78966 (13)	1.0217 (2)	0.0413 (6)
H1A	0.6980	0.7944	0.9302	0.050*
N2	0.7787 (2)	0.85483 (14)	1.0984 (2)	0.0392 (6)
C1	0.9120 (3)	0.99080 (18)	1.2363 (3)	0.0446 (7)
C2	0.8549 (2)	0.98993 (16)	1.0913 (3)	0.0400 (7)
C3	0.8637 (3)	1.05886 (18)	1.0069 (3)	0.0485 (8)
Н3	0.8252	1.0596	0.9107	0.058*
C4	0.9282 (3)	1.12578 (18)	1.0634 (4)	0.0542 (8)

C5	0.9863 (3)	1.1252 (2)	1.2051 (4)	0.0592 (9)
Н5	1.0316	1.1702	1.2427	0.071*
C6	0.9772 (3)	1.0587 (2)	1.2899 (4)	0.0573 (9)
Н6	1.0158	1.0591	1.3861	0.069*
C7	0.7914 (2)	0.91924 (17)	1.0253 (3)	0.0417 (7)
H7	0.7588	0.9206	0.9271	0.050*
C8	0.7105 (2)	0.71797 (17)	1.0892 (3)	0.0369 (6)
C9	0.6508 (2)	0.65335 (17)	0.9912 (3)	0.0381 (7)
C10	0.6826 (3)	0.57283 (17)	1.0217 (3)	0.0416 (7)
H10	0.7397	0.5600	1.1023	0.050*
C11	0.6292 (3)	0.51139 (17)	0.9317 (3)	0.0450 (7)
C12	0.5412 (3)	0.52992 (18)	0.8141 (3)	0.0460 (7)
C13	0.5089 (3)	0.61112 (19)	0.7852 (3)	0.0445 (7)
C14	0.5643 (2)	0.67246 (18)	0.8733 (3)	0.0413 (7)
H14	0.5434	0.7270	0.8534	0.050*
C15	0.7519 (3)	0.4079 (2)	1.0611 (4)	0.0713 (10)
H15A	0.8233	0.4340	1.0431	0.107*
H15B	0.7622	0.3493	1.0618	0.107*
H15C	0.7355	0.4255	1.1533	0.107*
C16	0.5452 (4)	0.4238 (2)	0.6446 (4)	0.0853 (12)
H16A	0.5791	0.4595	0.5812	0.128*
H16B	0.4935	0.3848	0.5880	0.128*
H16C	0.6077	0.3952	0.7071	0.128*
C17	0.3907 (3)	0.7059 (2)	0.6315 (4)	0.0697 (10)
H17A	0.3538	0.7308	0.7052	0.105*
H17B	0.3364	0.7070	0.5407	0.105*
H17C	0.4616	0.7357	0.6225	0.105*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0686 (3)	0.0506 (3)	0.1438 (5)	0.00267 (18)	0.0284 (3)	0.0265 (2)
01	0.0746 (17)	0.0646 (15)	0.0377 (12)	-0.0140 (12)	-0.0059 (11)	-0.0017 (11)
O2	0.0660 (14)	0.0498 (12)	0.0287 (11)	0.0048 (10)	-0.0008 (10)	-0.0018 (9)
O3	0.0799 (16)	0.0411 (12)	0.0584 (14)	-0.0084 (11)	0.0066 (13)	-0.0024 (11)
O4	0.0701 (16)	0.0687 (15)	0.0606 (15)	-0.0312 (12)	0.0147 (13)	-0.0247 (12)
O5	0.0551 (14)	0.0737 (16)	0.0426 (13)	-0.0110 (12)	-0.0106 (11)	-0.0072 (11)
N1	0.0504 (14)	0.0429 (14)	0.0266 (12)	-0.0088 (11)	-0.0039 (11)	-0.0032 (11)
N2	0.0450 (14)	0.0359 (13)	0.0336 (13)	-0.0029 (11)	-0.0019 (11)	-0.0071 (11)
C1	0.0470 (17)	0.0485 (18)	0.0377 (17)	-0.0016 (14)	0.0053 (15)	-0.0063 (14)
C2	0.0383 (16)	0.0407 (16)	0.0394 (17)	0.0028 (13)	0.0032 (14)	-0.0047 (13)
C3	0.0459 (18)	0.0463 (18)	0.0512 (19)	0.0034 (14)	0.0031 (15)	0.0013 (15)
C4	0.0466 (19)	0.0399 (17)	0.079 (3)	0.0017 (14)	0.0184 (19)	0.0001 (17)
C5	0.051 (2)	0.0457 (19)	0.082 (3)	-0.0077 (15)	0.0138 (19)	-0.0220 (19)
C6	0.052 (2)	0.063 (2)	0.054 (2)	-0.0096 (16)	0.0002 (16)	-0.0239 (18)
C7	0.0454 (17)	0.0456 (17)	0.0304 (15)	-0.0010 (14)	-0.0032 (13)	-0.0056 (14)
C8	0.0372 (15)	0.0422 (16)	0.0308 (16)	0.0025 (13)	0.0051 (13)	-0.0042 (13)
C9	0.0416 (16)	0.0406 (16)	0.0325 (15)	-0.0050 (13)	0.0077 (13)	-0.0048 (13)

C10	0.0436 (17)	0.0463 (17)	0.0339 (16)	-0.0040 (14)	0.0043 (13)	-0.0037 (13)
C11	0.0531 (19)	0.0387 (16)	0.0471 (18)	-0.0075 (14)	0.0194 (16)	-0.0045 (14)
C12	0.0483 (18)	0.0507 (18)	0.0400 (18)	-0.0182 (15)	0.0107 (15)	-0.0130 (15)
C13	0.0396 (17)	0.060 (2)	0.0333 (17)	-0.0103 (14)	0.0033 (14)	-0.0069 (14)
C14	0.0429 (17)	0.0436 (17)	0.0371 (16)	-0.0028 (13)	0.0064 (14)	-0.0015 (13)
C15	0.084 (3)	0.0450 (19)	0.083 (3)	0.0038 (18)	0.010(2)	0.0028 (18)
C16	0.113 (3)	0.066 (2)	0.075 (3)	-0.008 (2)	0.011 (3)	-0.035 (2)
C17	0.056 (2)	0.084 (3)	0.061 (2)	-0.0003 (19)	-0.0123 (18)	0.004 (2)
Geometric par	rameters (Å, °)					
Br1—C4		1.892 (3)	С5—	H5	0.93	00
01—C1		1.350 (4)	С6—	·H6	0.93	00
O1—H1		0.8200	С7—	·H7	0.93	00
O2—C8		1.219 (3)	C8—	·C9	1.48	31 (4)
O3—C11		1.371 (3)	С9—	·C10	1.37	7 (4)
O3—C15		1.407 (4)	С9—	·C14	1.38	31 (4)
O4—C12		1.366 (3)	C10-	C11	1.37	(4)
O4—C16		1.403 (4)	C10-	-H10	0.93	00
O5—C13		1.359 (3)	C11-	C12	1.38	6 (4)
O5—C17		1.406 (4)	C12-	C13	1.38	6 (4)
N1—C8		1.349 (3)	C13-	C14	1.37	6 (4)
N1—N2		1.369 (3)	C14-	-H14	0.93	00
N1—H1A		0.8600	C15-	-H15A	0.96	600
N2—C7		1.274 (3)	C15-	-H15B	0.96	600
C1—C6		1.378 (4)	C15-	-H15C	0.96	600
C1—C2		1.399 (4)	C16-	-H16A	0.96	600
С2—С3		1.387 (4)	C16-	-H16B	0.96	600
С2—С7		1.440 (4)	C16-	-H16C	0.96	00
C3—C4		1.368 (4)	C17-	-H17A	0.96	00
С3—Н3		0.9300	C17-	-H17B	0.96	00
C4—C5		1.375 (5)	C17-	-H17C	0.96	00
C5—C6		1.357 (5)				
C1-01-H1		109.5	C14-	С9С8	121.	.4 (3)
C11—O3—C1	5	118.0 (2)	С9—	C10—C11	119.	4 (3)
C12—O4—C1	6	116.3 (3)	С9—	C10—H10	120.	.3
C13—O5—C1	7	117.4 (2)	C11-	C10H10	120.	.3
C8—N1—N2		120.2 (2)	03—	-C11C10	123.	.9 (3)
C8—N1—H1A	1	119.9	03—	-C11—C12	115.	6 (3)
N2—N1—H1A	A	119.9	C10-	C11C12	120.	.5 (3)
C7—N2—N1		116.1 (2)	O4—	-C12—C13	117.	9 (3)
O1—C1—C6		118.1 (3)	O4—	-C12C11	122.	.4 (3)
O1—C1—C2		122.5 (3)	C13-	C12C11	119.	5 (3)
C6—C1—C2		119.4 (3)	05—	-C13—C14	124.	.3 (3)
C3—C2—C1		118.5 (3)	05—	-C13—C12	115.	9 (3)
С3—С2—С7		118.9 (3)	C14-	C13C12	119.	8 (3)
C1—C2—C7		122.5 (3)	C13-	C14C9	120.	.3 (3)
C4—C3—C2		120.8 (3)	C13-	C14H14	119.	9
С4—С3—Н3		119.6	С9—	C14—H14	119.	9

С2—С3—Н3	119.6	O3—C15—H15A	109.5
C3—C4—C5	120.2 (3)	O3—C15—H15B	109.5
C3—C4—Br1	119.8 (3)	H15A—C15—H15B	109.5
C5-C4-Br1	120.0 (3)	O3—C15—H15C	109.5
C6—C5—C4	119.9 (3)	H15A—C15—H15C	109.5
С6—С5—Н5	120.1	H15B—C15—H15C	109.5
С4—С5—Н5	120.1	O4—C16—H16A	109.5
C5—C6—C1	121.2 (3)	O4—C16—H16B	109.5
С5—С6—Н6	119.4	H16A—C16—H16B	109.5
С1—С6—Н6	119.4	O4—C16—H16C	109.5
N2—C7—C2	121.6 (3)	H16A—C16—H16C	109.5
N2—C7—H7	119.2	H16B—C16—H16C	109.5
С2—С7—Н7	119.2	O5-C17-H17A	109.5
O2—C8—N1	123.0 (2)	O5—C17—H17B	109.5
O2—C8—C9	123.3 (3)	H17A—C17—H17B	109.5
N1—C8—C9	113.7 (2)	O5—C17—H17C	109.5
C10—C9—C14	120.4 (3)	H17A—C17—H17C	109.5
С10—С9—С8	118.2 (3)	H17B—C17—H17C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N2	0.82	1.92	2.642 (3)	145
N1—H1A···O2 ⁱ	0.86	2.14	2.888 (3)	146
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$.				

Fig. 1

